

Modeling of a Hybrid Eyepiece with Diffractive Lens Surface for Chromatic Aberration Correction

Abstract

Hybrid lensese with both refractive and diffractive surfaces become a promising solution in different applications. Here we will demonstrate an example on a hybrid eyepiece, in which a diffractive lens surface is used to correct chromatic aberration. The initial design is taken from Zemax OpticStudio[®] and imported into VirtualLab Fusion for further investigation. The modeling can be done either based on the desired wavefront phase response, or with the actual diffractive surface structures (either in continuous or quantized way) considered.

Design and Modeling Task

Analysis Based on Wavefront Phase Response

On-Axis Case: Ray Tracing Analysis

The optical setup including the wavefront surface response is originally designed with Zemax OpticStudio[®] using a Binary 2 surface. Such an optical system can be directly imported into VirtualLab Fusion.

On-Axis Case: Field Tracing Analysis

Off-Axis Case: Ray Tracing Analysis

Off-Axis Case: Field Tracing Analysis

Analysis Based on Actual Surface Structures

Design of Diffractive Lens Structure

The structure profile of the diffractive layer is calculated by TEA according to the wavefront phase response:

$$h^{\rm DOE}(\rho) = \frac{\lambda}{2\pi n} \Delta \psi(\rho)^{\rm DOE}$$

Where, $h^{\text{DOE}}(\rho)$ is the structure height profile, $\Delta \psi(\rho)^{\text{DOE}}$ is the wavefront phase response function, λ is the reference wavelength, and n is the refractive index of the diffractive lens.

On-Axis Case: Desired and Unwanted Diffraction Orders

+1st diffraction order

0th diffraction order

∝ Electric Energy Density

 $[1E3 (V/m)^2]$

-1st diffraction order

∝ Electric Energy Density

 $[(^{V}/_{m})^{2}]$

64.8

33.1

1.51

20

Visualization of Quantized Diffractive Lens Structure

On-Axis Case: Different Quantization Schemes

Off-Axis Case: Desired and Unwanted Diffraction Orders

Off-Axis Case: Different Quantization Schemes

Peak into VirtualLab Fusion

Workflow in VirtualLab Fusion

- Import lens systems from Zemax OpticStudio[®]
 - Import Optical Systems from Zemax [Use Case]
- Configuration of Diffractive Lenses
- Configuration of Parameter Run
 - <u>Usage of the Parameter Run Document</u> [Use Case]

VirtualLab Fusion Technologies

Document Information

title	Modeling of a Hybrid Eyepiece with Diffractive Lens Surface for Chromatic Aberration Correction
document code	DFL.0002
version	1.0
toolbox(es)	Starter Toolbox, Diffractive Optics Toolbox, Grating Toolbox
VL version used for simulations	VirtualLab Fusion Summer Release 2019 (7.6.0.116)
category	Application Use Case
further reading	 <u>Design and Analysis of Intraocular Diffractive Lens</u> <u>Import Optical Systems from Zemax OpticStudio[®]</u>